Lecture- 6

Stoke's theorem, Divergence Theorem

Considering a surface S having element dS and curve C denotes the curve :

Stokes' Theorem

If there is a vector field \mathbf{A} , then the line integral of \mathbf{A} taken round \mathbf{C} is equal to the surface integral of $\nabla \times \mathbf{A}$ taken over \mathbf{S} :

$$\int_{C} \mathbf{A} \cdot \mathbf{dr} = \int_{S} \nabla \times \mathbf{A} \cdot \mathbf{dS} = \int_{S} \nabla \times \mathbf{A} dS$$
Two-dimensional system
$$\begin{vmatrix}
\mathbf{A} = A_{x}\mathbf{i} + A_{y}\mathbf{j} \\
\mathbf{dr} = dx\mathbf{i} + dy\mathbf{j}
\end{vmatrix}
\nabla \times \mathbf{A} = \left(\frac{\partial A_{y}}{\partial x} - \frac{\partial A_{x}}{\partial y}\right)\mathbf{k}$$

$$\mathbf{n}dS = dxdy\mathbf{k}$$

$$\int_{C} (A_{x}dx + A_{y}dy) = \iint_{S} \left(\frac{\partial A_{y}}{\partial x} - \frac{\partial A_{x}}{\partial y}\right) dxdy$$

How to make a line to a surface?

P and Q represent the same point!

$$\int_{P}^{Q} \mathbf{A} \cdot \mathbf{dr} = \int_{P}^{Q} (A_{x} dx + A_{y} dy + A_{z} dz)$$

$$\int \mathbf{A} \cdot \mathbf{dS} = \int \mathbf{A} \cdot \mathbf{n} dS$$

$$\int_C \mathbf{A} \cdot \mathbf{dr} = \int_S \nabla \times \mathbf{A} \cdot \mathbf{dS}$$

Pradeep Singla

Gauss' **Divergence** Theorem

The tubular element is "divergent" in the direction of flow.

$$\nabla \cdot \rho \mathbf{u} = \text{div } \rho \mathbf{u}$$

The net rate of mass flow from unit volume

We also have: The surface integral of the velocity vector **u** gives the net volumetric flow across the surface

$$\int \mathbf{u} \cdot \mathbf{dS} = \int \mathbf{u} \cdot \mathbf{n} dS$$

The mass flow rate of a closed surface (volume)

$$\int_{S} \rho \mathbf{u} \cdot \mathbf{dS} = \int_{\sigma} \nabla \cdot \rho \mathbf{u} d\sigma$$

Stokes' Theorem

$$\int_{C} \mathbf{A} \cdot \mathbf{dr} = \int_{S} \nabla \times \mathbf{A} \cdot \mathbf{dS} = \int_{S} \nabla \times \mathbf{A} dS$$

Gauss' Divergence Theorem

$$\int_{S} \mathbf{A} \cdot \mathbf{dS} = \int_{\sigma} \nabla \cdot \mathbf{A} d\sigma$$

Stokes formula: vector field global circulation

Theorem. If S(C) is **any** oriented surface delimited by C:

$$\int_{C} \overrightarrow{\textbf{V}} \cdot \overrightarrow{\textbf{dr}} = \iint_{S(C)} \textbf{curl } \overrightarrow{\textbf{V}} \cdot \overrightarrow{\textbf{dS}}$$

Sketch of proof.

$$\begin{array}{c|c}
 & y \\
\hline
 & \frac{\varepsilon}{2} \\
\hline
 & P \\
\hline
 & \frac{\varepsilon}{2} \\
\hline
 & \frac{\varepsilon}{2} \\
\hline
 & \frac{\varepsilon}{2} \\
\hline
 & \frac{\varepsilon}{2} \\
\hline
\end{array}$$

$$\int_{\varepsilon^{2}} \vec{\mathbf{V}} \cdot \vec{\mathbf{dr}} = \left(V(P) + \frac{\varepsilon}{2} \frac{\partial V_{y}}{\partial x} \right) \cdot \varepsilon + \left(V(P) - \frac{\varepsilon}{2} \frac{\partial V_{y}}{\partial x} \right) \cdot (-\varepsilon) + O(\varepsilon^{3})$$

$$+ \left(V(P) + \frac{\varepsilon}{2} \frac{\partial V_{x}}{\partial y} \right) \cdot (-\varepsilon) + \left(V(P) - \frac{\varepsilon}{2} \frac{\partial V_{x}}{\partial y} \right) \cdot \varepsilon + O(\varepsilon^{3})$$

$$\int_{\varepsilon^{2}} \vec{\mathbf{V}} \cdot \vec{\mathbf{dr}} = \left(\frac{\partial V_{y}}{\partial y} - \frac{\partial V_{x}}{\partial y} \right) \varepsilon^{2} + O(\varepsilon^{3})$$

 $\int_{\varepsilon^2} \vec{\mathbf{V}} \cdot \vec{\mathbf{dr}} = \left(\frac{\partial V_y}{\partial x} - \frac{\partial V_x}{\partial y} \right) \varepsilon^2 + O(\varepsilon^3)$

... and then extend to **any** surface delimited by C.

Divergence Formula: global conservation laws

Theorem. If V(C) is the volume delimited by S

$$\iint_{S} \overrightarrow{\boldsymbol{V}} \cdot \overrightarrow{\boldsymbol{dS}} = \iiint_{V(S)} div \ \overrightarrow{\boldsymbol{V}} \ dV$$

Sketch of proof. Flow through the oriented elementary planes x = ctt and x+dx = ctt:

$$-V_x(x,y,z).dydz + V_x(x+dx,y,z).dydz$$

and then extend this expression to the lateral surface of the cube.

Other expression:
$$V_x$$
 (x+dx,y,z).dydz - V_x (x,y,z).dydz = $\frac{\partial V_x}{\partial x}$ dxdydz extended to the vol. of the elementary cube: $\left(\frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial y} + \frac{\partial V_z}{\partial z}\right)$ dxdydz